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1. INTRODUCTION
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In a recent study, 120-mm gun firings [were performed to establish the balistic

contributions due to the combustible cases used!. Measured velocities and pressures we:e

compared with matching interior ballistic code simulations with the hope of quantifying those
contributions. Previously, for firings for which the charge-mass-to-projectile-mass (C/M) ratio
was low, IBHVG2, a Ilumped-parameter interior ballistic code, has provided good
comparisons'?. Aiso in the past, the NOVA family of two-phase interior ballistic codes, of
which XNOVAKTC (XK'IC) is the latest version, has been shown to be able to simulate firings
with very good success'?>4, In this recent study, however, for which the C/M was about unity,
there was a wide disparity between the predictions of XKTC and those of IBHVG2 for the same
nominal data base.

In the previous work’, it was shown that XKTC could be made to mimic the
experitnental 120-mm gun firings quite well. For IBHVG2, however, that was not the situation.
For one case, IBHVG2 gave a calculated maximum breech pressure that was 42 MPa higher
than that predicted by XKTC for the same nominal data base. It was found that a difference of
14 MPa could be attributed to the fact that IBHVG2 does not model the projectile boattail
intrusion, and that 3 MPa each could be attributed to the fact that IBHVG2 neither models
flamespreading nor intergranuler stress. The major difference in the predictad maximum
pressures, however, was attributed to the simple physics used in the derivation of the pressure
gradients allowed by IBHVG2. In XKTC, the axial pressure gradient is calculated from first
principles and analytic correlations; i in IBHVG2, only analytical pressure gradient relations due
to Lagrange and due to Pidduck- Kent® are available.

In this report, several ballistic parameters which might affect the pressure gradient,
especially for large C/M ratios, are examined in some detail. The objective of this study was to
determine the physics that must be included in the analytic gradient equation, so that che
predictions of lumped-parameter codes can be improved.

II. INITIAL COMPARISONS BETWEEN EXPERIMENT AND XKTC

The 120-mm experimental gun firings are described in a previous paperl. The gun tube
was instrumented with five pressure gages in the chamber: two at 95 mm, one at 286 mm
(midchamber) and two at 489 mm from the rear face of the tub.. There were also seven
downbore gages, situated at 768 mm, 1048 mm, 1530 mm, 2292 mm, 3054 mm, 3816 mm, and
4578 mm from the rear face of the tube. Assuming that the gages at 95 mm determine the
breech pressure accurately, that the base of the projectile before it moves is located at 541 mm
from the rear face of the tube, and that the pressure measured as each downbore gage is
uncovered is the projectile base pressure at that time, one can use the data contained in
Reference 1 to calculate the ratio of the breech pressure to the projectile base pressure for
several discrete values of projectile travel. Table 1 presents the average pressure ratios for the
three gun firings which were performed with no cases and average pressure ratios for the three
gun firings which were performed with inert cases.
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Table 1. Experimental Ratios of Breech Pressure to Projectile
Base Pressure at Several Discrete Values of Projectile Travel

Travel (m) 0227 0507 0989 1751 2513 3275 4.037

No case 133 140 161 165 139 149 165
Inectcase 129 135 164 170 146 151 165

The data points for the ratios of the breech to projectile base pressure versus travel from
Table 1 are plotted against calculated curves of these ratios from XKTC in Figure 1. Both the
caseless gun firing series and the inert case gun firing series are shown. Breech and base
pressure curves are added to assist in interpreting the ratio data. The XKTC calculations were
performed using measured values wherever possible and reasonable values for all other input
data. These simulations gave excellent agreement with measured pressure-time curves and
pressure difference curves. The agreement between the measured values and the calculated
values for pressure ratios for all but the last two points is very good. The reason for the last
points not fitting well is not known. Ir any case, this good agreement, at least for the major
portion of the ballistic event, should make XKTC a useful tool for studying the gradient
phenomenology. With this understanding, in this report, XKTC calculations have been assumed
to furnish the "correct"” answers with which to compare lumped-parameter calculations.

Caseless Inert Case
a6 =8
F 800.0 }- 5800.0
s.0 - -~ BREECH ---
i T BSEM oo g | g oo T BRSET |- 000 5
K . & & . S
k . 2
X ; - sc0 0 X - 3000
. ! N
a Ay - =00 0 g a I 2000 g
a AT o . . a.
- 100.0 -k 1000
“ A LE L R i '° ° R T T v T !’ °
O 160 R0 80 0 8.0 0 1@ @20 30 40 B.O
Travel! {(meters) . Travel (metere)

Figure 1. Comparisons Between Measured and XKTC-Calculated Ratios of Breech Pressure to
Base Pressure.

III. FIRST MODEL COMPARISONS

As we have shown that that XKTC could be used for accurate simulations of gun firings,
we sought to perform calculations with XKTC specifically simplified so that IBHVG2
calculations could be compared to them. To that end, the first series of calculations performed
with XKTC utilized data bases with (a) 7-perforated granular propellant evenly distributed along
the length of the chamber, (b) the chamber diameter equal to the bore diameter, {c) zero barrel
resistance, (d) a flat-based projectile, (¢) nominal heat loss to the chamber walls, and (f) a




propellant ignition temperature equal to.the ambient temperature, 30 that the propeliant was all
ignited at the start of calculdtions. A typicsl XKTC data base used in this study is included as
Anmdk&ﬁempanionmﬂvozdnuhnhhdndednwl

) Gmwhhtwod:ﬁmtcbmbuvdmma’mnh _one wikh a chamber volume
"o 98322 cm® and one with a chamber volume of 98322 cm®. Two different gums were
simulated in order to determine whether the observed effects were a function of the physical
size of the weapon. The other weapon parameters. that were associated with.each of these two
guhs are are shown in Table 2. For each of the two weapons, two different projectile weights
wefe used to produce the two different C/M ratios for which calculations wera peeformed. *

Table 2. Weapon Parameters for the First Series of Calculations

Chamber volume 98322 cm® . 9832 cem®

Travel *© = 4572m ' 188 m

Propellant mass 9.8 kg 0.098 kg ‘
Projectile masses 9.8 kg and 392kg 0.0°8 kg and 0.392 kg |:
Bore diameter 1270 mm - 28.65 mm

: Theeﬂectsofpmpelhntbummemdthemmmumdnmberprmmmaho
exumned Tnble3shmthepanmetmwhld\werevmed \

Ta_ble 3. Other Parametets for the First Series of Calculations

{ Buming Rate (p in MPa) 1.10519 p'° mm/s 0408451 p*® mm/s
Max Pressure 172 MPa 34SMPa 517 MPa

The propellant thermochemistry for all calculations is shown in Table 4.

Table 4. Propellant Thermochemistry

Impetus 1136 J /g
Covolume . 0976 cm /g
Gamma 1.23

Flame Temperature 3141 K
Molecular Weight 23.0 g/g-mole
Density 1.66 g/cm3




+ - Table 5. Comparisons of Calculated Maximum Breech Pressures
e e sad Muzzie Velocities for XKTC and IBHVG2

) XKTC IBHVG2
‘L' N . .‘ o, - Lagrange Gradient Pidduck-Kent Gradient

Ch BR . CM[Manjmum Tie Myt Time | Manimem Time Mumie Time M— Time Memie Time
Vol | Breesch Velocity Broech Velocity Velocity

Lt NP ) @A) ) L M) (me) () (me) [ (MPR) () (mps)  (me)
L 10 10 173 77957 133 10 75 96 133[1M 75 9%3 133
L 10 10 |34 65 1352 104 | M6 63 1363 103 |3 63 135% 103
L 10 10 |s17 61 155 91 |6 59 15% 91 |81 59 1561 91
L 10 025|174 138 S® 27 |1® 13S sS7  BS|[1® Bs 87  Bs
L 10 025|S 12 79 18138 111 783 180 | M8 111 78 180
L 10 025|518 104 887 159|518 103 81 158 | 516 103 892 158
L 08 10 [172 47 8¢ 112 184 47 82 112181 46 894 112
L 08 10 |37 38 120 82 [ 36 1260 82 |37 36 1261 82
L 08 10 |s17 34 1494 69 |50 30 1487 69 |n 31 492 69
L 08 025|177 83 S11 198 |19 83 515 1971 83 S15 197
L.,Q8- 025/343. &5 TI0 146 345 65 T8 146 | 34 65 T8 146
L 08 025|514 55 850 122518 $6 8% 122 | 516 56 8% 12.2
S 10 10 |72 14 1130 35 |18 14 1083 36 |18t 1« 1091 36
S 10 10 |34 127 1552 27 |3@ 12 1511 27 |33« 12 1509 27
S 10°10 |56 " 11 175 23 |52 10 1206 23 |98 10 1710 23
S 10 025F172 26 642 63 | 1719 25 630 63 | 1M 25 630 63
S 10 025(345 ' 21 895 47 |347 21 881 47 |47 21 880 47
S 10 025518 19 987 41 |s13 19 95 41 |s13 19 95 41
S 08 10 [172 90 1057 32 |184 91 1031 32 |182 90 1033 32
S 08 10 |31 0 1461 23 |35 70 143 24 |35 0 1466 24
S 08 025|172 16 90 57 | 175 16 87 57 | 174 16 587 57
S 08 025)|34s 13 82 41 |3 13 84 41 |37 13 84 41
S 08 025]s14 11 9% 35 |s16 11 %9 35 |s15 11 949 35

The comparison calculaticns performed with XKTC and with IBHVG2 (using the
Lagrange gradient model and the Pidduck-Kent gradient model) are summarized in Table 5 for
the variations described above. In the table, the "Ch Vol" is the chamber volume of the
particular weapon, and "BR" is thc propellant bummg rate, where "1.0" implies 1.10519 p
mm/s and "0.8" denotes 0.408451 p mm/s. The maximum breech pressure and muzzle “relocity
with their associated times are given in the table. For each horizontal line on this table, the
propellant web in the XKTC calculation was varied until the desired peak pressure was achieved;
the propellant length was maintained between 2 and 3 times the outer propellant diameter.
Then, with the same final propellant dimensions, the associated IBHVG2 Lagrange and the




IBHVG2 Pidduck-Kent calculations were performed.

Close inspection of this table reveals that IBHVG?2 agrees with XKTC very closely when
C/M is 025, for both the Lagrange gradient and the Pidduck-Kent gradient, for both weapons
and for both propellant burn rates. However, when C/M is 1.0, agreement is not as good.

This first comparison series of cakulations with XKTC and IBHVG2 investigated the
influence of C/M, chamber volume, propellant burning rate and maximum breech pressure on
ballistic performance. Figures 2 through 5 have been generated from XXTC calculations for the
weapon with the lurge chamber volume. Figure 2 shows plots of the mean to projectile base
pressures for C/M equal to 1.0, for increasing maximum breech pressures, and for different
burning rates. Figure 3 shows plots vi the breech to mean pressure ratios for C/M woqual to 1.0,
for increasing maximum breech pressures, and for different burning raies. Figure 4 shows plots
of the mean to projectilc base pressures for C/M equal to 0.25, for increasing maximum breech
pressures, and for different burning rates. Figure 5 shows plots of the breech to mean pressure
ratios for C/M equal to 025, for increasing maximum breech pressures, and for different
burning rates. In each of these figures, tlie plots on the lett have mcreasmgly higher maximum
breech pressures and were performed with a bummg rate of 1.10519 p mm/s, while the plots
on the right have the same mcreasmgly higher maximum breech pressures and ware performed
with a burning rate of 0. 408451p mm/& The shape and magnitude of the plots for the smaller
chamber volume were the same for the corresponding C/M, burning rates ard pressures except
the time scale and travel scale were about 1/3 that of the larger chamber volume calculations,
so they have not been included in this report. As an aid in interpreting the ratios, the base and
breech pressures are plotted on each graph.
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Figure 2. XKTC-Calculated Mean/Base Pressure Ratio Curves for a C/M of 1.0
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Figure 3. XKTC-Calculated Breech/Mean Pressure Ratio Curves for a C/M of 1.0
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Figure 4. XKTC-Calculuted Mean/Base Pressure Ratio Curves for a C/M of 0.25




| - S
| - 8600.0 - 800.0
| 1.6 - 1.8
--- BREECH [ -~- BREECH
‘ BASE 400.0 3 § BASE - 400.0 5
1.6 — ; g 1.8 - §
~ = ~ =
Lot [o
5 14 4 sooeo 5 44 I sooo0
4 .
g B 2 i
- 2000 -
f 12 -J . 4 g 12 -J - 2000 ¢
0 Laieeeed o } a.
-9 o ] -9
1.0 _._,‘_—/’::?"'_— - 1000 1.0 100.0
t
’."ﬂ.
[} ax T -t RY a T .0
o 5.0 100 160 ] 5.0 10.0 16.0
Time (mwsec) Time (mwsec)
@ 2.0 - @ 20
I soo O | soo0.0
18 18 —{
~-- BREECH | - -- HBREECH —_
i . BASE 400.0 -3 ] e I «00.0 5
E e X ] & o g
~ R = ~ =~
oy R N - 3000 - 300.
2 1.4 4 ":' *, .. 3 5 1e : . 300.0 5
8 ., a ] 2
Al . 200C 0 < ! .
F 1.2 - R :i..: ] 12 4 : . I 2000 H
> S - S R .~ =
1.0 e F 1000 10 4 5 =L 1000
-”' ¢
s sty T -0 .8 T - o
.0 5.0 100 18.0 o 5.0 10.0 18.0
Time (msec) Time (mauaec)
@ 20 o @ 20
] ) H00 D - 600 2
8 <l S, ‘.) 18 v
CUBRGECH _ o ] %~ - - BREECH
Fl . N 400 0 - - - 400.0 o
O BAS L) .
g e . . % i & g L s _{ BASE )
~ i ‘ < ~3 3
w : 000 0 Py - 3oon
a 14 4 - } ¥ S 14 -
S i . : ° i
- z2onNno » =] -
2 12 . ¢ ? oz 2000 y
l ., o \ a
a. | S 4 a
10 dmms o - 1000 10 3 l. 1000
| ‘fr l 0 J
8 Tye-oe v 0 8 T T -t -0
[} 50 100 16 0 o 60 100 15.0
Time (manc) Time (masec)

Figure 5. XKTC-Calculated Breech/Mean Pressure Ratio Curves for a C/M of 0.25

The ratio plots in Figures 2 through 5 illustrate the complex nature of the relationship
between the breech, mean and base pressures. The general nature of the ratio curves is to be
constant near 1.0 for some length of time, followed by a first rise, a drop-off, a second rise and
in some cases a second drop-off and another rise. The second drop-off seems to be caused by
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the slivering phase of the propellant burning, as it occurs just as XKTC indicates that slivering is
taking place. Further, for low pressure calculations, for which the propellant does not sliver
before projectile exit, the second drop-off does not occur. Calculations done with a single
perforation grain also did not show a second drop-off. The first rise and drop-off may be caused
by the rarefaction wave caused by the projeciile motion, the first peak corresponding to the time
that the rarefaction wave reaches the breech face and the first minimum corresponding to the
time the reflected wave reaches the base of the projectile. In all of these XKTC calculations,
we observed that an ullage region opens up between the projectile base and the front end of the
propellant bed. In this vllage region, the pressure drop per unit of distance across this ullage
region is much smaller than across the propellant bed. Gough has speculated that the
formaticn of an ullage region, as observed in the XKTC calculations, and the diccontinuity in gas
velocity at the propellant/ullage boundary may contribute to the undulatory shape of the mean
to base pressare ratio.

There remained the question, however, of what physical processes were responsible for
the greater than 10% maximum breech pressure differences obtserved between real-world
simulations with XKTC and the equwalent IBHVG?2 calculations, the differences that motivated
this study.

IV. SECOND MODEL COMPARISONS

The second set of model comparisons included calculations at both high and low C/M,
because C/M was implicated ir the lack of agreement between XKTC a1d IBHVG? in the first
comparisons. The Lagrange gradient was used for all IBHVG2 calcilations. Several other
parameters were also varied to determine their contribution to the problem. For these
calculations, we modeled the weapon with the 9832.2 cm® chamber volume, and we used a
burning rate exponent of 1.0. We varied the barrel resistance for both XKTC and IBHVG?2
calculations, and for XKTC, introduced flamespreading and added chambrage (the necking down
of the chamber to the bore diameter).

Since a constant -‘hamber volume was desired, chamber length had to change when
chambrage was introduced. The chambrage was modeled as a truncated cone whose length was
76.2 mm, which required the chamber length be reduced from 776.22 mm to 541.02 mm, with
the radius of the breech end of the chamber up to the beginning of the chambrage being 76.91
mm. Baseline and chambrage configurztions are illustrated in Figure 6.

Flamespreading in XKTC is convectively driven, with the initial stimulus provided by
some level of modeling of igniter functioning. In these calculation, the igniter was described as
venting over the rear 304.8 mm of propellant bed, causing the entire prope!lant bed to be ignited
within 2 ms. The resistance was modeled with a linearly interpolated table of travel versus
resistive pressures. The resistance started at 0.690 MPa at 0-mm travel, remained constant for
6.35 mm, rose to 6.90 MPa at 12.70 mm, fell to 0.690 MPa at 19.05 mm and remained constant
until barre] exit, as illustrated in Figure 7.
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The resvlts of this .econd series of calculations are given in Table 6. The propellant
dimensions selected for these calculations were those determined to achieve a peak pressure of
345 MPa with XKTC, assuming zero barrel resistance, no chambrage and the propellant ignited
at time zero for the given C/M.

Table 6. Comparisons of Calculated Maximum Breech Pressures
and Muzzle Velocities for XKTC and IBHVG2

Maximum -
Code Variation* Breech Time Muwzzle Time C/M
Pressure Velocity

(MPa) (ms) (m/s) _ (ms)

XKTC B 345 6.5 1352 10.4 1.0
IBHVG2 B 346 6.3 1363 103 1.0
XKTC R 363 6.5 1379 10.2 1.0
IBHVG2 R 365 6.3 1387 10.2 1.0
XKTC F 332 6.0 1337 9.8 1.0
XKTIC C 310 6.5 1303 10.5 1.0
XKTC FRC 321 6.0 1317 9.8 1.0
XKTC B 345 11.2 ™ 181 025
IBHVG2 B 348 11.1 783 180 025
XKTC R 363 11.2 792 179 025
IBHVG2 R 367 11.0 796 178 025
XKTC F 347 9.3 779 162 025
XKTC C 336 114 T4 18.1 0.25
XKTC FRC 351 9.7 784 165 025

*B = Baseline R = Resistance F = Flamespreading C = Chambrage

The first line of Table 6, the baseline calculation with XKTC, is the same as the XKTC

calculation on the second line of Table 5. The second line of Table 6, the baseline IBHVG2 .

calculation, is also the same as that shown on the second line of Table 5. The next two lines
result from adding bore resistance, and show the expected rise in peak pressure for both XKTC
and IBHVG2. The following line results from adding just flamespreading to the XKTC baseline
calculation and documents a drop in peak pressure. The next line represents adding just
chambrage to the baseline XKTC calculation -- note the huge drop in peak pressure of 35 MPa!
The final calculation in the C/M = 1.0 series has flamespreading, bore resistance, and
chambrage added to the baseline data base. Again, the large decrease in peak pressure is
attributed primarily to the chambrage.

For C/M of 0.25, it is seen that bore resistance makes a significant change, but about

the same for both XKTC and IBHVG2. The influence of flamespreading and chambrage are
about 2/5 as great as those for the higher C/M.
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Plots of ratios of breech pressure to base pressure from the XKTC calculations for this
second series of comparison calculations are found in Figure 8. Plot 25 results from having
added flamespread alone to the bascline. Plot 26 has resistance added to the baseline. Neither
Plot 25 nor Plot 26 shows much difference from the baseline plot. Plot 28 had adde<
chambrage to the baseline; Plot 29 had added chambrage, flarnespreading, and resistance. Both
Plots 28 and 29 show a much lower pressure ratio at early time. Plots 27 and 30 are "full”
XKTC simulations (which now include projectile intrusion into the chamber) of the inert case
(Plot 27) and the caseless gun firings (Plot 28). The fact that the gradient curves in Figure 8
have assumed the general shape of the measuved curves leads us to believe that the major

interior ballistic parameters have now been included.
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V. DISCUSSION AND CONCLUSIONS

Earlier studies using the XKTC code! demonstrated that propellant packaging and
boattail intrusion can have significant impact on maximum chamber pressures. The current
investigation reveals that flamespreading and, to an even greater extent, chambrage, can affect
calculated pressures as well, particularly at large C/M ratios.

In this study, we have seen that the presence of chambrage makes a significant
difference in the pressure gradient. The larger cross section of the chamber results in a closet
axial proximity of combustion product gases to the projectile base, with less axial motion and
shorter transit times required to transfer pressures downbore. The result is a significant

. reduction in the pressure gradient, as shown in plots 28 and 29 of Figure 8.

The role of flamespreading, as well, has been demonstrated in this study. The phased
ignition of propellant surfaces, rather than the simuitaneous igrition event assumed in most
lumped-parameter codes, can influence the overall rate of gas production, as well as the
formation of pressure waves, resulting in differences in the inbore trajectory and impacting
maximum chamber pressure. Wave dynamics associated with the rarefaction accompanying
projectile motion may add further structure to the pressure gradient.

But a more interesting feature of the structure of the pressure gradient is shown in this
study to accompany the formation of a region of axial ullage between the propellant charge and
the projectile as it first moves downbore. XKTC calculations suggest that a lower gas pressure
gradient exists in this gle-phase region than in the two-phase region of the propellant charge,
primarily because of a lower resistance to the transfer of pressure information. This result
suggests that lumped-parameter codes might benefit from a two-region pressure gradient in
order to capture the true structure of the pressure field. Such a feature might prove to be
particularly important for simulation of stick charges, for which a well defined boundary between
the two regions persists throughout the interior ballistic cycle, or for highly nonuniform initial
distributions of propellant, as when firing low-zone artillery changes.

All of the above effects are exacerbated by an increase in C/M, since the projectile
then moves out more rapidly, and axial dimc: “ions and accompanying transit times are increased
at a time when significant amounts of gas are still being locally produced in the gun chamber.

We conclude from this study that lumped-parameter interior ballistic codes could
benefit greatly from the inclusion of a new or modified gradient equation including functional
dependence on C/M, chambrage, propellant distribution and ullage; the influences of
flamespreading and wave dynamics may also be included, though the basis for such terms would
necessarily be more heuristic.
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SHEAT

SGUN

$PROJ
$PDIS
$PDIS
$PDIS
$PDIS
$PDIS
$PDIS
$PDIS
$PDIS

SRESI

$INFO

SRECO

$PRIM

$PROP

TSHL
TWAL = 293

NAME = ‘600 IN~ TEST’ CHAM = 600

GRVE = 5.0

NAME = ‘FLAT’

SHOW='PMAX’
SHOW='CHWT'’
SHOW='’DIAM’
SHOW=’PD’

SHOW='WEB'’

SHOW='VMUZ'’
SHOW='ZMUZ (
SHOW=’LDEN"’
NPTS

TRAV
PRES

5
o,
0,

RUN

0.004590

'I6CO05 ’ DELT = SE-5

APPENDIX B
IBHVG2 Data Base

CSHL = 1848 RSHL = 0.284
HO = 0.0648 HL = 1

TRAV = 180
LAND = 5.0 G/L = 1. TWST = 99

PRNT = 21.6

DECK=’OUT"’
 DECK=’PROP’ NTH=2
DECK=’PROP’ NTH=2
DECK=’PROP’ NTHw2
DECK=’PROP’ NTH=2
DECK=’OUT’
2)’ DECK=’OUT’
DECK='OUT’
AIR = 0
.25, .5, .75, 180
o, ©O0, O, O

DELP = 5E-5

GRAD = 1 POPT = 1,1,1,0,2 SOPT = 0
EPS = 0.002 CONP = 0

NAME = ’NONE’ RECO = 0 RCWT = 0

NAME = ‘AIR’ CHWT = .01039 TEMP = 294

GAMA = 1.4 FORC = 28284 cov = 27

NAME = ’‘JA2 7P’ CHWT = 21.6 GRAN = ’7PF’
RHO = 0.06 GAMA = 1.23 FORC = 380000
cov = 27. TEMP = 3141 EROS = 0.0
NTBL=-~2 EX4L=1.,1.

PR4L=8000,100000 CF4l=.0003,.0003

LEN = 1.25 DIAM = 0.50

PD = 0.02C WEB=.11
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